Section 2

Sample Design

Verilog HDL (EE 499/599 CS 499/599) — © 2004 AMIS

The Verilog Module

Modules are the basic building
blocks in Verilog.

Every module starts with the
keyword module, a unique name,
and ends with endmodule.

The descriptions of the logic
being modeled are placed within
the module.

Modules can represent anything
from a low level logic block to a
high level system.

Sample Design: 4-bit adder

module name (ports);
// port declarations
// data type declarations

// functionality,
instantiations, timing, etc.

endmodule

Verilog HDL (EE 499/599 CS 499/599) — © 2004 AMIS

Every level of hierarchy uses the module/endmodule statements, no matter what the functionality is inside. The
module is the building block for all designs in Verilog.

1 Bit Adder

A

0

0

a \ 5
sum 0 1 1 1 0
co 1 0 0 0 1
b / 1 0 1 1 0
1 1 0 1 0
ci 1 1 1 1 1

Verilog HDL (EE 499/599 CS 499/599) — © 2004 AMIS

Here’s the functionality of a 1-bit adder. Now let’s design it in Verilog.

1 Bit Adder Module

a—\

Sum

CO

ci

* Module definition and port list.

module addbit (a, b, ci, sum, co);
// port declarations
// data type declarations
// functionality,

endmodule

Verilog HDL (EE 499/599 CS 499/599) — © 2004 AMIS

module is a keyword in Verilog

addbit is a user-defined name (identifier), we’ll discuss the rules for identifiers a little later in the course.

The port list (a, b, ci, sum, co) can be in any order. Also, the port names follow the same “identifier” rules.

1 Bit Adder Port Declarations

» Port declarations (any order)

module addbit (a, b, ci, sum, co);

a —\ output sum, co;
sum input a, b, ci;
) —F CO // data type declarations
1 J/ functionality,

endmodule

ci

Verilog HDL (EE 499/599 CS 499/599) — © 2004 AMIS

The port type declaration (input, output, or inout) can be in any order. Also, the ports can be in any order within the
declaration. For example, the following would be legal port declarations:

output co, sum;

input ci, a, b;

input b, ci, a;

output sum,co;

1 Bit Adder Data Type Declarations

« Data type declarations
(any order)

module addbit (a, b, ci, sum, co);

. \ output sum, co;

sum .)
input a, b, ci;

MY wire a, b, ci;

b_]
/ reg sum, co;

// functionality,

ci
endmodule

Verilog HDL (EE 499/599 CS 499/599) — © 2004 AMIS

Data type declarations can be an in any order. As a general rule, they follow the port declarations and are declared
before they’re used.

The wire data type is the default in Verilog. I have added here to show that we’re declaring all data types.
However, if I did not include the line: wire a, b, ci; Verilog would still default the data type for a, b, and ci to a 1-
bit wire. Any signal/input that is wider than 1-bit has to be explicitly declared. For example, if ‘a’ is a 4-bit wide
bus, it would have to be declared as such.

The reg data type declaration is required for any signal/output that is the LHS of an assignment in a procedural
block. There will be much more on this topic later. For now just remember that if a signal/output is on the LHS of
an assignment in a procedure block, you have to declare it as a reg first.

1 Bit Adder Functionality

Sum

CoO

ci

* Functionality

module addbit (a, b, ci, sum, co);
output sum, co;
input a, b, ci;
wire a, b, ci;
reg sum, co;
always @(a or b or ci) begin
{co,sum} =a+b + ci;
end

endmodule

-Note: ‘{}’ means concatenation

Verilog HDL (EE 499/599 CS 499/599) — © 2004 AMIS

The concatenation construct “{ }”, saves steps in making the assignment to co and sum. Without it, you would
have to declare in intermediate 2-bit variable, and make individual assignments:

module addbit (a, b, ci, sum, co);
output sum, co;

input a, b, ci;

wire a, b, ci;
reg sum, co;

reg [1:0] temp;

always @(a or b or ci) begin
temp=a+b+ci;
co =temp[1];
sum = temp|[0];

end

endmodule

4 Bit Adder Module Instantiation

Ap]__| ~ 5 « Instantiate 4 1-bit adders to
su I result[0]
a | = create a 4-bit adder

]

module add4bits (result, carry, r1, r2, ci);

su result[1] input [3:0] r1, r2;

input ci;

2[1] y ci i
E— -~ output [3:0] result;
STE i output carry;
\SU:P @ wire [3:0] r1, r2, result;
E : p o wire ci, carry, c1, c2, c3;
. addbit ul (r1[0], r2[0], ci, result[0], c1);
I — >~ i addbit u2 (r1[1], r2[1], c1, result[1], c2);

o
T

==

! sup ! result[3]
_ ! E addbit u3 (ri[2], r2[2], c2, result[2], c3);
2[3] . cl

addbit u4 (r1[3], r2[3], c3, result[3], carry);

endmodule

L

Verilog HDL (EE 499/599 CS 499/599) — © 2004 AMIS

Notice that each instance of addbit has a unique “instance name” such as ul, u2, etc. This is a requirement in
Verilog; whenever you instantiate a lower level module you must use an “instance name” to define each instance.
The instance name follows the rules of Verilog identifiers.

Notice that 7/, 2, and result are 4-bit wide busses. The “[]” nomenclature signifies each individual bit of the bus.

Named vs. Positional Port Connections

* There are two methods for making connections to

modules during instantiation:

— Ordered List: The signals to be connected must appear in the module
instantiation in the same order as the port order in the module’s
definition.

— Port Named List: The signals to be connected are specified using the
port name in the module definition. Order is irrelevant using this
method.

Given: module aa21 (Q, A, B);

Instances: aa2l ul (my q, my a, my_b); // ordered list
aa2l u2 ((A(my_a), .B(my b), .Q(my q)); // port named list

Verilog HDL (EE 499/599 CS 499/599) — © 2004 AMIS

The fastest way to instantiate a lower level module is to use the Ordered List method. Sometimes, the fastest isn’t
always the safest way. The safest way to ensure that all ports are connected and connected correctly is to use the
Port Named List method.

Simulating in Verilog

* Required components Testbench

— Stimulus

— Device Under Test Stimulus

(DUT) u

— Response Generation

. . DUT
and Verification i L

Response

Verilog HDL (EE 499/599 CS 499/599) — © 2004 AMIS

Our DUT in this case is the 4-bit Adder that we’ve built from 1-bit Adders.

10

Testbench

module testbench;
// Data type declam

// Instantiate modules

T Why aren’t there ports in
the testbench?

// Apply stimulus

// Display results

endmodule

Verilog HDL (EE 499/599 CS 499/599) — © 2004 AMIS

The testbench is always the top level module in your design. In a sense, it surrounds your design. The testbench
provides stimulus to the design and receiving feedback from the design. In this example we’ll show how a simple
testbench works.

The name “testbench” is a user defined name. The name you use for your testbench can be any legal identifier.

11

Testbench

« Data type declarations
 Instantiate module(s)

* module testbench; module testbench;
. // Data type declaration reg [3:0] rl, r2;
. // Instantiate modules (DUT) reg ci;

) wire [3:0] result;
. /I Apply stimulus . .
add4bits ul (result, carry, rl, r2, ci);

. // Display results)
/I Apply stimulus

* endmodule .
// Display results

endmodule

Why isn’t ‘carry’ declared in the data type declarations?

Verilog HDL (EE 499/599 CS 499/599) — © 2004 AMIS

Again, the default data type for Verilog is a 1-bit wire. A wire of 1-bit does not need to be declared. Any other
data type, or any other vectored wire must be declared. Notice that we have to declare result because it is wider
than 1-bit.

Also, notice that we again have used an “instance name” for our instantiation of add4bits.

12

Testbench

* Apply stimulus
* The pound sign (#) character

denotes the delay specification for initial
both gate instances and procedural begin
statements. r1=0;r2=0;ci=0;
» The initial block is a (behavioral) #10 rl1 =5;
“procedural block™ that executes #10 r2=10;
only once. #10 ci=1;
» The dollar sign ($) denotes Verilog #10 r1 =8;
system tasks or PLI routines. #10 ci=0;
« S$finish causes the simulation to #10 $finish:
finish and exit. end

Verilog HDL (EE 499/599 CS 499/599) — © 2004 AMIS

The initial block starts executing at simulation time zero and steps through the stimulus based on the timing control
in the procedural block. The simulation will finish at 60 time units. We’ll discuss how to give the time units some
meaning (i.e. nanoseconds, picoseconds, etc.) in the next few slides.

13

Procedural Blocks

Executes once Executes at every rising clock edge
initial always @(posedge clock)

begin begin

rl=0;r2=0;ci=0; rl <=1;

#10 rl =5; 2 <=0;

#10 2 =10; ci<=1;

#10 ci=1; end

#10 r1 =8;

#10 ci=0;

#10 $finish;
end

Verilog HDL (EE 499/599 CS 499/599) — © 2004 AMIS

initial and always are the ONLY procedural blocks in Verilog.

14

Testbench (cont.)

module testbench;

« // Data type declaration /
» // Instantiate modules /
« // Apply stimulus

\

» // Display results

endmodule

Y

Y

module testbench;

add4bits ul (result, carry, rl, r2, ci);
initial begin
rl=0;r2=0;ci=0;

#10 r1 =5;
#10 r2=10;
#10 ci=1;
#10 r1 =8;
#10 ci=0;
#10 $finish;
end
endmodule

Verilog HDL (EE 499/599 CS 499/599) — © 2004 AMIS

(3

‘.. .” means that something irrelevant to the example has been left out. It is not legal Verilog syntax.

15

Display Simulation Results to Screen

initial begin
$timeformat(-9,2, ns”, 10);
$monitor(“time=%t r1=%b r2=%b ci=%Db result=%b carry=%b", Srealtime, rl1, 12, ci, result, carry);

end

» The $timeformat system task globally specifies how time values will be
displayed using the %t formatter. (<units>, <precision>, <suffix>,
<min_width>)

» The $monitor system task displays the values of the argument list
whenever any of the arguments change (except $time, $stime, $realtime)

» The $realtime system task returns the current simulation time as a real
number.

Verilog HDL (EE 499/599 CS 499/599) — © 2004 AMIS

NC-Verilog and VerilogXL requires the “timescale compiler directive to be used whenever the $timeformat
command is used. This will be discussed later in the course.

16

Viewing Simulation Results - VCD

e The $dumpfile and $dumpvars
system tasks will work with any
Verilog simulator.

* The commands will open a file
called “dump.ved” and place all
of the simulation data in that file.
The file can then be opened by
various waveform viewers and
other tools.

initial begin
$dumpfile (“dump.vcd”);
$dumpvars;

end

Verilog HDL (EE 499/599 CS 499/599) — © 2004 AMIS

17

Test

module testbench;

// Data type declaration—|

bench (cont.)

/

// Instantiate modules

// Apply stimulus —

// Display results \

endmodule

v

—

T

module testbench;
reg [3:0] r1, 12;
reg ci;

wire [3:0] result

add4bits ul (result, carry, rl, 12, ci);
initial begin

end
initial begin
\‘$timeformat(R, “ns”, 10);

$monitor(“time=%t r1=%b r2=%b ci=%b
result=%b carry=%b", Srealtime, r1, 12, ci,
result, carry);

end

endmodule

Verilog HDL (EE 499/599 CS 499/599) — © 2004 AMIS

18

Simulation results to screen

« To Simulate the design we have to include all the files
containing the design modules.

— For example, our files are named: testbench.v add4bits.v addbit.v

e Simulation results:

Compiling source file testbench.v"

Compiling source file "add4bits.v"

Compiling source file "addbit.v"

Highest level modules:

testbench
0.00 ns r1=0000 r2=0000 ci=0 result=0000 carry=0
10.00 ns r1=0101 r2=0000 ci=0 result=0101 carry=0
20.00 ns r1=0101 r2=1010 ci=0 result=1111 carry=0
30.00 ns r1=0101 r2=1010 ci=1 result=0000 carry=1
40.00 ns r1=1000 r2=1010 ci=I result=0011 carry=1
50.00 ns r1=1000 r2=1010 ci=0 result=0010 carry=1

L.17 testbench.v": $finish at simulation time 60.00 ns

Verilog HDL (EE 499/599 CS 499/599) — © 2004 AMIS

The various Verilog simulators require slightly different commands to compile and simulate the design. The
ModelSim and Cadence software demonstrations will show how to load, compile, and simulate your designs.

19

Simulation results - Waveform

« Simulators generally provide a way to view
the simulation waveforms.

e The waveform simulation results were
stored in the VCD file.

Verilog HDL (EE 499/599 CS 499/599) — © 2004 AMIS

Both ModelSim and Cadence have a waveform viewer built into the simulation tool.

20

Review

What are the two methods for making
connections to modules during
instantiation?

What is an “Instance Name?”’
What are the three elements to a testbench?

What is the difference between the ‘initial’
and ‘always’ procedural blocks?

Verilog HDL (EE 499/599 CS 499/599) — © 2004 AMIS

21

Homework

 Homework assignment #1 is on the class web
page.

 Homework assignment #1 1s due Wednesday,
January 21, 2004.

Verilog HDL (EE 499/599 CS 499/599) — © 2004 AMIS

22

